Analyzing developmental processes with optimal transport

Dec 13, 2019

Speakers

About

In this talk we introduce a mathematical model to describe temporal processes like embryonic development and cellular reprogramming. We consider stochastic processes in gene expression space to represent developing populations of cells, and we use optimal transport to recover the temporal couplings of the process. We apply these ideas to study 315,000 single-cell RNA-sequencing profiles collected at 40 time points over 18 days of reprogramming fibroblasts into induced pluripotent stem cells. To validate the optimal transport model, we demonstrate that it can accurately predict developmental states at held-out time points. We construct a high-resolution map of reprogramming that rediscovers known features; uncovers new alternative cell fates including neural- and placental-like cells; predicts the origin and fate of any cell class; and implicates regulatory models in particular trajectories. Of these findings, we highlight the transcription factor Obox6 and the paracrine signaling factor GDF9, which we experimentally show enhance reprogramming efficiency. Our approach provides a general framework for investigating cellular differentiation, and poses some interesting theoretical questions.

Organizer

Categories

About NIPS 2019

Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

Sharing

Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow NIPS 2019