Variance Reduction for Matrix Games

Dec 12, 2019

Speakers

About

We present a randomized primal-dual algorithm that solves the problem minx maxy y^T A x to additive error epsilon in time nnz(A) + sqrt{nnz(A) n} / epsilon, for matrix A with larger dimension n and nnz(A) nonzero entries. This improves the best known exact gradient methods by a factor of sqrt{nnz(A) / n} and is faster than fully stochastic gradient methods in the accurate and/or sparse regime epsilon < sqrt{n / nnz(A)$. Our results hold for x,y in the simplex (matrix games, linear programming) and for x in an \ell_2 ball and y in the simplex (perceptron / SVM, minimum enclosing ball). Our algorithm combines the Nemirovski's "conceptual prox-method" and a novel reduced-variance gradient estimator based on "sampling from the difference" between the current iterate and a reference point.

Organizer

Categories

About NIPS 2019

Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

Sharing

Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow NIPS 2019