Approximation Capabilities of Neural ODEs and Invertible Residual Networks

Jul 12, 2020



Recent interest in invertible models and normalizing flows has resulted in new architectures that ensure invertibility of the network model. Neural ODEs and i-ResNets are two recent techniques for constructing models that are invertible, but it is unclear if they can be used to approximate any continuous invertible mapping. Here, we show that out of the box, both of these architectures are limited in their approximation capabilities. We then show how to overcome this limitation: we prove that any homeomorphism on a p-dimensional Euclidean space can be approximated by a Neural ODE or an i-ResNet operating on a 2p-dimensional Euclidean space. We conclude by showing that capping a Neural ODE or an i-ResNet with a single linear layer is sufficient to turn the model into a universal approximator for non-invertible continuous functions.



About ICML 2020

The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%


Recommended Videos

Presentations on similar topic, category or speaker