Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions

Jul 12, 2020



Deep learning models achieve high predictive accuracy in a broad spectrum of tasks, but rigorously quantifying their predictive uncertainty remains challenging. Usable estimates of predictive uncertainty should (1) cover the true prediction target with a high probability, and (2) discriminate between high- and low-confidence prediction instances. State-of-the-art methods for uncertainty quantification are based predominantly on Bayesian neural networks. However, Bayesian methods may fall short of (1) and (2) — i.e., Bayesian credible intervals do not guarantee frequentist coverage, and approximate posterior inference may undermine discriminative accuracy. To this end, this paper develops the discriminative jackknife (DJ), a frequentist procedure that uses higher-order influence functions (HOIFs) of a trained model parameters to construct a jackknife (leave-one-out) estimator of predictive confidence intervals. The DJ satisfies (1) and (2), is applicable to a wide range of deep learning models, is easy to implement, and can be applied in a post-hoc fashion without compromising model accuracy. Experiments demonstrate that DJ performs competitively compared to existing Bayesian and non-Bayesian baselines.



About ICML 2020

The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%


Recommended Videos

Presentations on similar topic, category or speaker