Fractal Gaussian Networks: A sparse random graph model based on Gaussian Multiplicative Chaos

Jul 12, 2020



We propose a novel stochastic network model, called Fractal Gaussian Network (FGN), that embodies well-defined and analytically tractable fractal structures. Such fractal structures have been empirically observed in diverse applications. FGNs interpolate continuously between the popular purely random geometric graphs (a.k.a. the Poisson Boolean network), and random graphs with increasingly fractal behavior. In fact, they form a parametric family of sparse random geometric graphs that are parametrised by a fractality parameter ν which governs the strength of the fractal structure. FGNs are driven by the latent spatial geometry of Gaussian Multiplicative Chaos (GMC), a canonical model of fractality in its own right. We explore the natural question of detecting the presence of fractality and the problem of parameter estimation based on observed network data. Finally, we explore fractality in community structures by unveiling a natural stochastic block model in the setting of FGNs.



About ICML 2020

The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%


Recommended Videos

Presentations on similar topic, category or speaker