A Swiss Army Knife for Minimax Optimal Transport

Jul 12, 2020



The Optimal transport (OT) problem and its associated Wasserstein distance have recently become a topic of great interest in the machine learning community. However, the underlying optimization problem is known to have two major restrictions: (i) it largely depends on the choice of the cost function and (ii) its sample complexity scales exponentially with the dimension. In this paper, we propose a general formulation of a minimax OT problem that can tackle these restrictions by jointly optimizing the cost matrix and the transport plan, allowing us to define a robust distance between distributions. We propose to use a cutting-set method to solve this general problem and show its links and advantages compared to other existing minimax OT approaches. Additionally, we use this method to define a notion of stability allowing us to select the most robust cost matrix. Finally, we provide an experimental study highlighting the efficiency of our approach.



About ICML 2020

The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%


Recommended Videos

Presentations on similar topic, category or speaker