A Flexible Latent Space Model for Multilayer Networks

Jul 12, 2020



Entities often interact with each other through multiple types of relations, which are often represented as multilayer networks. Multilayer networks among the same set of nodes usually share common structures, while each layer can possess its distinct node connecting behaviors. This paper proposes a flexible latent space model for multilayer networks for the purpose of capturing such characteristics. Specifically, the proposed model embeds each node with a latent vector shared among layers and a layer-specific effect for each layer; both elements together with a layer-specific connectivity matrix determine edge formations. To fit the model, we develop a projected gradient descent algorithm for efficient parameter estimation. We also establish theoretical properties of the maximum likelihood estimators and show that the upper bound of the common latent structure's estimation error is inversely proportional to the number of layers under mild conditions. The superior performance of the proposed model is demonstrated through simulation studies and applications to two real-world data examples.



About ICML 2020

The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%


Recommended Videos

Presentations on similar topic, category or speaker