Temporal Logic Point Processes

Jul 12, 2020



We propose a modeling framework for event data, which excels in small data regime with the ability to incorporate domain knowledge. Our framework will model the intensities of the event starts and ends via a set of first-order temporal logic rules. Using softened representation of temporal relations, and a weighted combination of logic rules, our framework can also deal with uncertainty in event data. Furthermore, many existing point process models can be interpreted as special cases of our framework given simple temporal logic rules. We derive a maximum likelihood estimation procedure for our model, and show that it can lead to accurate predictions when data are sparse and domain knowledge is critical.



About ICML 2020

The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%


Recommended Videos

Presentations on similar topic, category or speaker