Amortized Population Gibbs Samplers with Neural Sufficient Statistics

Jul 12, 2020

Speakers

About

Amortized variational methods have proven difficult to scale to structured problems, such as inferring positions of multiple objects from video images. We develop amortized population Gibbs (APG) samplers, a class of scalable methods that frame structured variational inference as adaptive importance sampling. APG samplers construct high-dimensional proposals by iterating over updates to lower-dimensional blocks of variables. We train each conditional proposal by minimizing the inclusive KL divergence with respect to the conditional posterior. To appropriately account for the size of the input data, we develop a new parameterization in terms of neural sufficient statistics. Experiments show that APG samplers can be used to train highly-structured deep generative models in an unsupervised manner, and achieve substantial improvements in inference accuracy relative to standard autoencoding variational methods.

Organizer

Categories

About ICML 2020

The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

Sharing

Recommended Videos

Presentations on similar topic, category or speaker