Safe Policy Optimization with Local Generalized Linear Function Approximations

Dez 6, 2021



Safe exploration is a key to applying reinforcement learning (RL) in safety-critical systems. Existing safe exploration methods guaranteed safety under the assumption of regularity, and it has been difficult to apply them to large-scale real problems. We propose a novel algorithm, SPO-LF, that optimizes an agent's policy while learning the relation between a locally available feature obtained by sensors and environmental reward/safety using generalized linear function approximations. We provide theoretical guarantees on its safety and optimality. We experimentally show that our algorithm is 1) more efficient in terms of sample complexity and computational cost and 2) more applicable to large-scale problems than previous safe RL methods with theoretical guarantees, and 3) comparably sample-efficient and safer compared with existing advanced deep RL methods with safety constraints.


Über NeurIPS 2021

Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

Präsentation speichern

Soll diese Präsentation für 1000 Jahre gespeichert werden?

Wie speichern wir Präsentationen?

Ewigspeicher-Fortschrittswert: 0 = 0.0%


Empfohlene Videos

Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen