Next
Bayesian Methods
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Kernel Methods
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-005-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-005-alpha.b-cdn.net
      • sl-yoda-v2-stream-005-beta.b-cdn.net
      • 1034628162.rsc.cdn77.org
      • 1409346856.rsc.cdn77.org
      • Subtitles
      • Off
      • English (auto-generated)
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Kernel Methods
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Kernel Methods

            Jun 11, 2019

            Sprecher:innen

            AG

            Albert Gu

            Sprecher:in · 4 Follower:innen

            AB

            Alberto Bietti

            Sprecher:in · 0 Follower:innen

            AR

            Alexander Ratner

            Sprecher:in · 1 Follower:in

            Über

            Towards a Unified Analysis of Random Fourier Features Random Fourier features is a widely used, simple, and effective technique for scaling up kernel methods. The existing theoretical analysis of the approach, however, remains focused on specific learning tasks and typically gives pessimistic bounds which are at odds with the empirical results. We tackle these problems and provide the first unified risk analysis of learning with random Fourier features using the squared error and Lipschitz cont…

            Organisator

            I2
            I2

            ICML 2019

            Konto · 3,2k Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über ICML 2019

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Panel on FATE and how it affects the Queer Community
            44:06

            Panel on FATE and how it affects the Queer Community

            Luke Stark, …

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Residual Flows for Invertible Generative Modeling
            19:04

            Residual Flows for Invertible Generative Modeling

            Ricky T. Q. Chen

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 1 = 0.1%

            Understanding the Challenges of Algorithm and Hardware Co-design for Deep Neural Networks
            37:38

            Understanding the Challenges of Algorithm and Hardware Co-design for Deep Neural Networks

            Vivienne Sze

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Applications
            1:18:40

            Applications

            Adam Roberts, …

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Gradient estimation for implicit models with Stein's method
            45:32

            Gradient estimation for implicit models with Stein's method

            Yinghzen Li

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Poster spotlights #1
            10:51

            Poster spotlights #1

            Adín Ramírez Rivera, …

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2019 folgen