Next
Convex Optimization
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Learning Theory
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-009-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-009-alpha.b-cdn.net
      • sl-yoda-v2-stream-009-beta.b-cdn.net
      • 1766500541.rsc.cdn77.org
      • 1441886916.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Learning Theory
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Learning Theory

            Jun 11, 2019

            Sprecher:innen

            AA

            Abhijin Adiga

            Sprecher:in · 0 Follower:innen

            AP

            Aldo Pacchiano

            Sprecher:in · 0 Follower:innen

            AR

            Alessandro Rinaldo

            Sprecher:in · 0 Follower:innen

            Über

            Regret Circuits: Composability of Regret Minimizers Regret minimization is a powerful tool for solving large-scale problems; it was recently used in breakthrough results for large-scale extensive-form game solving. This was achieved by composing simplex regret minimizers into an overall regret-minimization framework for extensive-form game strategy spaces. In this paper we study the general composability of regret minimizers. We derive a calculus for constructing regret minimizers for composite…

            Organisator

            I2
            I2

            ICML 2019

            Konto · 3,2k Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über ICML 2019

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Understanding the Challenges of Algorithm and Hardware Co-design for Deep Neural Networks
            37:38

            Understanding the Challenges of Algorithm and Hardware Co-design for Deep Neural Networks

            Vivienne Sze

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Panel Discussion
            55:06

            Panel Discussion

            Andrew Ng, …

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Panel discussion
            58:54

            Panel discussion

            Alexander Madry, …

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Spotlight Set 2
            25:54

            Spotlight Set 2

            Achille Nazaret, …

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Assisting Vulnerable Communities through AI and OR: from Data to Deployed Decisions
            30:14

            Assisting Vulnerable Communities through AI and OR: from Data to Deployed Decisions

            Phebe Vayanos

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Safe Machine Learning
            1:55:23

            Safe Machine Learning

            Jan Leike, …

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2019 folgen