Safe Machine Learning

Jun 10, 2019



As we are applying ML to more and more real-world tasks, we are moving toward a future in which ML will play an increasingly dominant role in society. Therefore addressing safety problems is becoming an increasingly pressing issue. Broadly speaking, we can classify current safety research into three areas: specification, robustness, and assurance. Specification focuses on investigating and developing techniques to alleviate undesired behaviors that systems might exhibit due to objectives that are only surrogates of desired ones. This can happen e.g. when training on a data set containing historical biases or when trying measuring progress of reinforcement learning agents in a real-world setting. Robustness deals with addressing system failures in extrapolating to new data and in responding to adversarial inputs. Assurance is concerned with developing methods that enable us to understand systems that are opaque and black-box in nature, and to control them during operation. This tutorial will give an overview of these three areas with a particular focus on specification, and more specifically on fairness and alignment of reinforcement learning agents. The goal is to stimulate discussion among researchers working on different areas of safety.



About ICML 2019

The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%


Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow ICML 2019