Next
Privacy and Fairness
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Robust Statistics and Interpretability
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-007-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-007-alpha.b-cdn.net
      • sl-yoda-v2-stream-007-beta.b-cdn.net
      • 1678031076.rsc.cdn77.org
      • 1932936657.rsc.cdn77.org
      • Subtitles
      • Off
      • English (auto-generated)
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Robust Statistics and Interpretability
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Robust Statistics and Interpretability

            Jun 12, 2019

            Sprecher:innen

            AT

            Alain Tapp

            Sprecher:in · 0 Follower:innen

            AM

            Aleksander Madry

            Sprecher:in · 6 Follower:innen

            AS

            Alistair Stewart

            Sprecher:in · 1 Follower:in

            Über

            Do ImageNet Classifiers Generalize to ImageNet? Generalization is the main goal in machine learning, but few researchers systematically investigate how well models perform on truly unseen data. This raises the danger that the community may be overfitting to excessively re-used test sets. To investigate this question, we conduct a novel reproducibility experiment on CIFAR-10 and ImageNet by assembling new test sets and then evaluating a wide range of classification models. Despite our careful ef…

            Organisator

            I2
            I2

            ICML 2019

            Konto · 3,2k Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über ICML 2019

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Understanding overparameterized neural networks
            31:58

            Understanding overparameterized neural networks

            Jascha Sohl-Dickstein

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            The How2 Challenge: New Tasks for Vision and Language
            47:42

            The How2 Challenge: New Tasks for Vision and Language

            Lucia Specia, …

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Exact Sampling of Determinantal Point Processes with Sublinear Time Preprocessing
            23:12

            Exact Sampling of Determinantal Point Processes with Sublinear Time Preprocessing

            Michal Dereziński

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Incorporating natural language communication biases in multi-agent communication
            29:26

            Incorporating natural language communication biases in multi-agent communication

            Angeliki Lazaridou

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Overview of the day
            02:10

            Overview of the day

            Francois-Xavier Briol

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Asymptotics of Wide Networks from Feynman Diagrams
            16:01

            Asymptotics of Wide Networks from Feynman Diagrams

            Guy Gur-Ari

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2019 folgen