Next
Information Theory and Estimation
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Learning Theory: Games
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-001-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-001-alpha.b-cdn.net
      • sl-yoda-v3-stream-001-beta.b-cdn.net
      • 1148202645.rsc.cdn77.org
      • 1784416251.rsc.cdn77.org
      • Subtitles
      • Off
      • English (auto-generated)
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Learning Theory: Games
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Learning Theory: Games

            Jun 11, 2019

            Sprecher:innen

            AL

            Adam Lerer

            Sprecher:in · 0 Follower:innen

            AC

            Anoop Cherian

            Sprecher:in · 0 Follower:innen

            AK

            Anson Kahng

            Sprecher:in · 1 Follower:in

            Über

            Regret Circuits: Composability of Regret Minimizers Regret minimization is a powerful tool for solving large-scale problems; it was recently used in breakthrough results for large-scale extensive-form game solving. This was achieved by composing simplex regret minimizers into an overall regret-minimization framework for extensive-form game strategy spaces. In this paper we study the general composability of regret minimizers. We derive a calculus for constructing regret minimizers for composite…

            Organisator

            I2
            I2

            ICML 2019

            Konto · 3,2k Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Mathematik

            Kategorie · 2,4k Präsentationen

            Über ICML 2019

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Nested Reasoning About Autonomous Agents Using Probabilistic Programs
            13:41

            Nested Reasoning About Autonomous Agents Using Probabilistic Programs

            Iris R Seaman

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Characterizing Musical Correlates of Large-Scale Discovery Behavior
            21:20

            Characterizing Musical Correlates of Large-Scale Discovery Behavior

            Blair Kaneshiro

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Invariant Graph Networks
            25:13

            Invariant Graph Networks

            Yaron Lipman

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            NPR: Neural Personalised Ranking for Song Selection
            20:12

            NPR: Neural Personalised Ranking for Song Selection

            Mark Levy

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Palm theory, random measures and Stein couplings
            43:49

            Palm theory, random measures and Stein couplings

            Louis Chen

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Real-World Sequential Decision Making - Panel Discussion
            42:45

            Real-World Sequential Decision Making - Panel Discussion

            Dawn Woodard, …

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2019 folgen