Next
Combinatorial Optimization
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Robust Statistics and Machine Learning
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-006-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-006-alpha.b-cdn.net
      • sl-yoda-v2-stream-006-beta.b-cdn.net
      • 1549480416.rsc.cdn77.org
      • 1102696603.rsc.cdn77.org
      • Subtitles
      • Off
      • English (auto-generated)
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Robust Statistics and Machine Learning
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Robust Statistics and Machine Learning

            Jun 12, 2019

            Sprecher:innen

            AM

            Ameer Mohammed

            Sprecher:in · 0 Follower:innen

            BBL

            Ben Ben Liao

            Sprecher:in · 0 Follower:innen

            BZ

            Bowen Zhou

            Sprecher:in · 0 Follower:innen

            Über

            On the Convergence and Robustness of Adversarial Training Improving the robustness of deep neural networks (DNNs) to adversarial examples is an important yet challenging problem for secure deep learning. Across existing defense techniques, adversarial training with Projected Gradient Decent (PGD) is amongst the most effective. Adversarial training solves a min-max optimization problem, with the \textit{inner maximization} generating adversarial examples by maximizing the classification loss, an…

            Organisator

            I2
            I2

            ICML 2019

            Konto · 3,2k Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über ICML 2019

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Sum-Product Networks and Deep Learning: A Love Marriage
            39:28

            Sum-Product Networks and Deep Learning: A Love Marriage

            Robert Peharz

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Incorporating natural language communication biases in multi-agent communication
            29:26

            Incorporating natural language communication biases in multi-agent communication

            Angeliki Lazaridou

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Poster Session
            10:45

            Poster Session

            Anna Belova, …

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Towards interpretability for everyone: Testing with Concept Activation Vectors
            31:27

            Towards interpretability for everyone: Testing with Concept Activation Vectors

            Been Kim

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Loss landscape and behaviour of algorithms in the spiked matrix-tensor model
            20:30

            Loss landscape and behaviour of algorithms in the spiked matrix-tensor model

            Lenka Zdeborova

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            General ML
            1:16:05

            General ML

            Alexander Mathiasen, …

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2019 folgen