Next
Understanding Machine Learning via Exactly Solvable Statistical Physics Models
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Innovating Machine Learning with Near-Term Quantum Computing
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-004-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-004-alpha.b-cdn.net
      • sl-yoda-v2-stream-004-beta.b-cdn.net
      • 1685195716.rsc.cdn77.org
      • 1239898752.rsc.cdn77.org
      • Subtitles
      • Off
      • English (auto-generated)
      • English (United States)
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Innovating Machine Learning with Near-Term Quantum Computing
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Innovating Machine Learning with Near-Term Quantum Computing

            Dez 14, 2019

            Sprecher:innen

            MS

            Maria Schuld

            Sprecher:in · 2 Follower:innen

            Über

            Machine learning methods have had great success in learning complex representations that enable them to make predictions about unobserved data. Physical sciences span problems and challenges at all scales in the universe: from finding exoplanets in trillions of sky pixels, to finding machine learning inspired solutions to the quantum many-body problem, to detecting anomalies in event streams from the Large Hadron Collider. Tackling a number of associated data-intensive tasks including, but not …

            Organisator

            N2
            N2

            NIPS 2019

            Konto · 960 Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Elektronik und Elektrotechnik

            Kategorie · 91 Präsentationen

            Physik

            Kategorie · 261 Präsentationen

            Über NIPS 2019

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Gradient-Leaks: Understanding Deanonymization in Federated Learning
            10:26

            Gradient-Leaks: Understanding Deanonymization in Federated Learning

            Tribhuvanesh Orekondy

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Second-order methods for non convex optimization with complexity guarantees
            41:03

            Second-order methods for non convex optimization with complexity guarantees

            Stephen Wright

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Contributed talk 7 – Selection Bias Invalidates Fairness
            08:58

            Contributed talk 7 – Selection Bias Invalidates Fairness

            Margarita Boyarskaya

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 1 = 0.1%

            Deep learning for medical image quality control
            43:58

            Deep learning for medical image quality control

            Julia Schnabel

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 1 = 0.1%

            Synthetic Control
            1:58:02

            Synthetic Control

            Alberto Abadie, …

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 1 = 0.1%

            Blind Super-Resolution Kernel Estimation using an Internal-GAN
            13:58

            Blind Super-Resolution Kernel Estimation using an Internal-GAN

            Assaf Shocher, …

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NIPS 2019 folgen