Next
Towards physics-informed deep learning for turbulent flow prediction
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Causality and Exoplanets
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-010-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-010-alpha.b-cdn.net
      • sl-yoda-v2-stream-010-beta.b-cdn.net
      • 1759419103.rsc.cdn77.org
      • 1016618226.rsc.cdn77.org
      • Subtitles
      • Off
      • English (auto-generated)
      • English (United States)
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Causality and Exoplanets
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Causality and Exoplanets

            Dez 14, 2019

            Sprecher:innen

            BS

            Bernhard Schölkopf

            Sprecher:in · 14 Follower:innen

            Über

            Machine learning methods have had great success in learning complex representations that enable them to make predictions about unobserved data. Physical sciences span problems and challenges at all scales in the universe: from finding exoplanets in trillions of sky pixels, to finding machine learning inspired solutions to the quantum many-body problem, to detecting anomalies in event streams from the Large Hadron Collider. Tackling a number of associated data-intensive tasks including, but not …

            Organisator

            N2
            N2

            NIPS 2019

            Konto · 966 Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Mathematik

            Kategorie · 2,4k Präsentationen

            Über NIPS 2019

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Imperfect Humans, Imperfect Agents: How Can We Make Them Better Together
            27:27

            Imperfect Humans, Imperfect Agents: How Can We Make Them Better Together

            Finale Doshi-Velez

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Fine-Grained Distribution Grid Mapping Using Street View Imagery
            07:43

            Fine-Grained Distribution Grid Mapping Using Street View Imagery

            Qinghu Tang

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Programming the Graphcore IPU
            24:59

            Programming the Graphcore IPU

            Ryota Tomioka

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            1-min Lightning Talks (I)
            17:16

            1-min Lightning Talks (I)

            Benedikt Boecking, …

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Federated learning at Google: systems, algorithms, and applications
            26:54

            Federated learning at Google: systems, algorithms, and applications

            Daniel Ramage

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Solutions - Discussion Panel
            1:25:07

            Solutions - Discussion Panel

            Brandeis Marshall, …

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NIPS 2019 folgen