Contributed talk: What is Local Optimality in Nonconvex-Nonconcave Minimax Optimization?

Dec 14, 2019



Advances in generative modeling and adversarial learning gave rise to a recent surge of interest in differentiable two-players games, with much of the attention falling on generative adversarial networks (GANs). Solving these games introduces distinct challenges compared to the standard minimization tasks that the machine learning (ML) community is used to. A symptom of this issue is ML and deep learning (DL) practitioners using optimization tools on game-theoretic problems. Our NeurIPS 2018 workshop, "Smooth games optimization in ML", aimed to rectify this situation, addressing theoretical aspects of games in machine learning, their special dynamics, and typical challenges. For this year, we significantly expand our scope to tackle questions like the design of game formulations for other classes of ML problems, the integration of learning with game theory as well as their important applications. To that end, we have confirmed talks from Éva Tardos, David Balduzzi and Fei Fang. We will also solicit contributed posters and talks in the area.


About NIPS 2019

Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%


Recommended Videos

Presentations on similar topic, category or speaker