Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Learning De-biased Representations with Biased Representations
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-015-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-015-alpha.b-cdn.net
      • sl-yoda-v3-stream-015-beta.b-cdn.net
      • 1963568160.rsc.cdn77.org
      • 1940033649.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Learning De-biased Representations with Biased Representations
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Learning De-biased Representations with Biased Representations

            Jul 12, 2020

            Sprecher:innen

            HB

            Hyojin Bahng

            Řečník · 0 sledujících

            SC

            Sanghyuk Chun

            Řečník · 0 sledujících

            SY

            Sangdoo Yun

            Řečník · 0 sledujících

            Über

            Many machine learning algorithms are trained and evaluated by splitting data from a single source into training and test sets. While such focus on in-distribution learning scenarios has led interesting advances, it has not been able to tell if models are relying on dataset biases as shortcuts for successful prediction (e.g., using snow cues for recognising snowmobiles). Such biased models fail to generalise when the bias shifts to a different class. The cross-bias generalisation problem has been…

            Organisator

            I2
            I2

            ICML 2020

            Účet · 2,7k sledujících

            Kategorien

            Umělá inteligence a data science

            Kategorie · 10,8k prezentací

            Über ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Word Embeddings for Chemical Patent Natural Language Processing
            14:51

            Word Embeddings for Chemical Patent Natural Language Processing

            Camilo Thorne, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            On Detecting Data Pollution Attacks On Recommender Systems Using Sequential GANs
            16:37

            On Detecting Data Pollution Attacks On Recommender Systems Using Sequential GANs

            Behzad Shahrasb, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Active Learning for Realistic Human Settings
            41:00

            Active Learning for Realistic Human Settings

            Kalesha Bullard

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Opening Remarks
            02:07

            Opening Remarks

            Thorne Lay

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Nesterov Momentum Adversarial Perturbations in the Deep Reinforcement Learning Domain
            05:01

            Nesterov Momentum Adversarial Perturbations in the Deep Reinforcement Learning Domain

            Ezgi Korkmaz

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Poster #17

            Sara El Mekkaoui

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? ICML 2020 folgen