Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Performative Prediction
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-014-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-014-alpha.b-cdn.net
      • sl-yoda-v3-stream-014-beta.b-cdn.net
      • 1978117156.rsc.cdn77.org
      • 1243944885.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Performative Prediction
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Performative Prediction

            Jul 12, 2020

            Sprecher:innen

            JP

            Juan Perdomo

            Sprecher:in · 0 Follower:innen

            TZ

            Tijana Zrnic

            Sprecher:in · 0 Follower:innen

            CM

            Celestine Mendler-Dünner

            Sprecher:in · 0 Follower:innen

            Über

            When predictions support decisions they may influence the outcome they aim to predict. We call such predictions performative; the prediction influences the target. Performativity is a well-studied phenomenon in policy-making that has so far been neglected in supervised learning. When ignored, performativity surfaces as undesirable distribution shift, routinely addressed with retraining. We develop a risk minimization framework for performative prediction bringing together concepts from statistic…

            Organisator

            I2
            I2

            ICML 2020

            Konto · 2,7k Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Learning Factorized Weight Matrix for Joint Image Filtering
            14:08

            Learning Factorized Weight Matrix for Joint Image Filtering

            Xiangyu Xu, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Automated ML and its transformative impact on medicine and healthcare
            40:19

            Automated ML and its transformative impact on medicine and healthcare

            Mihaela van der Schaar

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            XtarNet: Learning to Extract Task-Adaptive Representation for Incremental Few-Shot Learning
            14:59

            XtarNet: Learning to Extract Task-Adaptive Representation for Incremental Few-Shot Learning

            Sung Whan Yoon, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Adding seemingly uninformative labels helps in low data regimes
            13:57

            Adding seemingly uninformative labels helps in low data regimes

            Christos Matsoukas, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Robust Pricing in Dynamic Mechanism Design
            15:47

            Robust Pricing in Dynamic Mechanism Design

            Yuan Deng, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            PareCO: Pareto-aware Channel Optimization for Slimmable Neural Networks
            10:26

            PareCO: Pareto-aware Channel Optimization for Slimmable Neural Networks

            Ting-wu Chin, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2020 folgen