Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Reinforcement Learning for Integer Programming: Learning to Cut
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-014-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-014-alpha.b-cdn.net
      • sl-yoda-v3-stream-014-beta.b-cdn.net
      • 1978117156.rsc.cdn77.org
      • 1243944885.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Reinforcement Learning for Integer Programming: Learning to Cut
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Reinforcement Learning for Integer Programming: Learning to Cut

            Jul 12, 2020

            Sprecher:innen

            YT

            Yunhao Tang

            Sprecher:in · 0 Follower:innen

            SA

            Shipra Agrawal

            Sprecher:in · 0 Follower:innen

            YF

            Yuri Faenza

            Sprecher:in · 0 Follower:innen

            Über

            Integer programming is a general optimization framework with a wide variety of applications, e.g., in scheduling, production planning, and graph optimization. As Integer Programs (IPs) model many provably hard to solve problems, modern IP solvers rely on heuristics. These heuristics are often human-designed, and tuned over time using experience and data. The goal of this work is to show that the performance of those solvers can be greatly enhanced using reinforcement learning (RL). In particular…

            Organisator

            I2
            I2

            ICML 2020

            Konto · 2,7k Follower:innen

            Kategorien

            Software und Programmierung

            Kategorie · 1k Präsentationen

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Adversarial Learning Bounds for Linear Classes and Neural Nets
            13:26

            Adversarial Learning Bounds for Linear Classes and Neural Nets

            Pranjal Awasthi, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interpretable Machine Learning of Quantum Emergence
            51:43

            Interpretable Machine Learning of Quantum Emergence

            Eun-Ah Kim, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Graph Convolutional Network for Recommendation with Low-pass Collaborative Filters
            14:54

            Graph Convolutional Network for Recommendation with Low-pass Collaborative Filters

            Wenhui Yu, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup
            13:40

            Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup

            Jang-Hyun Kim, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Invited talk: From skills to tasks: Reusing & generalizing knowledge for motor control
            49:15

            Invited talk: From skills to tasks: Reusing & generalizing knowledge for motor control

            Nicolas Heess

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Discrete Planning with End-to-end Trained Neuro-algorithmic Policies
            04:13

            Discrete Planning with End-to-end Trained Neuro-algorithmic Policies

            Marin Vlastelica Pogančić, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2020 folgen