Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Ready Policy One: World Building Through Active Learning
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-016-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-016-alpha.b-cdn.net
      • sl-yoda-v3-stream-016-beta.b-cdn.net
      • 1504562137.rsc.cdn77.org
      • 1896834465.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Ready Policy One: World Building Through Active Learning
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Ready Policy One: World Building Through Active Learning

            Jul 12, 2020

            Sprecher:innen

            JP

            Jack Parker-Holder

            Řečník · 1 sledující

            AP

            Aldo Pacchiano

            Řečník · 0 sledujících

            KC

            Krzysztof Choromanski

            Řečník · 0 sledujících

            Über

            Model-Based Reinforcement Learning (MBRL) offers a promising direction for sample efficient learning, often achieving state of the art results for continuous control tasks. However many existing MBRL methods rely on combining greedy policies with exploration heuristics, and even those which utilize principled exploration bonuses construct dual objectives in an ad hoc fashion. In this paper we introduce Ready Policy One (RP1), a framework that views MBRL as an active learning problem, where we ai…

            Organisator

            I2
            I2

            ICML 2020

            Účet · 2,7k sledujících

            Kategorien

            Umělá inteligence a data science

            Kategorie · 10,8k prezentací

            Über ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Thwarting Dr. Deceit's Malicious Activities in Conference Peer Review
            42:49

            Thwarting Dr. Deceit's Malicious Activities in Conference Peer Review

            Nihar B. Shah

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Federated Meta-Learning: Democratizing Algorithm Selection Across Disciplines and Software Libraries
            01:24

            Federated Meta-Learning: Democratizing Algorithm Selection Across Disciplines and Software Libraries

            Mukesh Arambakam, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Designing Differentially Private Estimators in High Dimensions
            14:43

            Designing Differentially Private Estimators in High Dimensions

            Aditya Dhar, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Debiasing Evaluations That are Biased by Evaluations
            12:12

            Debiasing Evaluations That are Biased by Evaluations

            Jingyan Wang, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Sequentially Additive Nonignorable Missing Data Modeling: Using Auxiliary Marginal Information
            40:58

            Sequentially Additive Nonignorable Missing Data Modeling: Using Auxiliary Marginal Information

            Mauricio Sadinle

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Taylor Expansion Policy Optimization
            15:04

            Taylor Expansion Policy Optimization

            Yunhao Tang, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? ICML 2020 folgen