Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Real-Time Optimisation for Online Learning in Auctions
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-012-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-012-alpha.b-cdn.net
      • sl-yoda-v3-stream-012-beta.b-cdn.net
      • 1338956956.rsc.cdn77.org
      • 1656830687.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Real-Time Optimisation for Online Learning in Auctions
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Real-Time Optimisation for Online Learning in Auctions

            Jul 12, 2020

            Sprecher:innen

            LC

            Lorenzo Croissant

            Sprecher:in · 0 Follower:innen

            MA

            Marc Abeille

            Sprecher:in · 0 Follower:innen

            CC

            Clément Calauzènes

            Sprecher:in · 0 Follower:innen

            Über

            In display advertising, a small group of sellers and bidders face each other in up to 10^12 auctions a day. In this context, revenue maximisation via monopoly price learning is a high-value problem for sellers. By nature, these auctions are online and produce a very high frequency stream of data. This results in a computational strain that requires algorithms be real-time. Unfortunately, existing methods, inherited from the batch setting, suffer O(sqrt( t )) time/memory complexity at each update…

            Organisator

            I2
            I2

            ICML 2020

            Konto · 2,7k Follower:innen

            Kategorien

            Wirtschaft und Finanzen

            Kategorie · 755 Präsentationen

            Über ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Graph Random Neural Features for Distance-Preserving Graph Representations
            13:09

            Graph Random Neural Features for Distance-Preserving Graph Representations

            Daniele Zambon, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Equivariant Neural Rendering
            15:26

            Equivariant Neural Rendering

            Emilien Dupont, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Boosting for Control of Dynamical Systems
            12:07

            Boosting for Control of Dynamical Systems

            Nataly Brukhim, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Deep Generative Video Compression with Temporal Autoregressive Transforms
            05:06

            Deep Generative Video Compression with Temporal Autoregressive Transforms

            Ruihan Yang, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Implicit Neural Scene Representations
            41:43

            Implicit Neural Scene Representations

            Vincent Sitzmann

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning Deep Kernels for Two-Sample Tests
            14:59

            Learning Deep Kernels for Two-Sample Tests

            Feng Liu, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2020 folgen