Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: An Imitation Learning Approach for Cache Replacement
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-007-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-007-alpha.b-cdn.net
      • sl-yoda-v2-stream-007-beta.b-cdn.net
      • 1678031076.rsc.cdn77.org
      • 1932936657.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            An Imitation Learning Approach for Cache Replacement
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            An Imitation Learning Approach for Cache Replacement

            Jul 12, 2020

            Sprecher:innen

            EZL

            Evan Zheran Liu

            Sprecher:in · 0 Follower:innen

            MH

            Milad Hashemi

            Sprecher:in · 0 Follower:innen

            KS

            Kevin Swersky

            Sprecher:in · 0 Follower:innen

            Über

            Program execution speed critically depends on reducing cache misses, as cache misses are orders of magnitude slower than hits. To reduce cache misses, we focus on the problem of cache replacement: choosing which cache line to evict upon inserting a new line. This is challenging because it requires planning far ahead and currently there is no known practical solution. As a result, current replacement policies typically resort to heuristics designed for specific common access patterns, which fail…

            Organisator

            I2
            I2

            ICML 2020

            Konto · 2,7k Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Challenges & Opportunities in Lifelong Reinforcement Learning
            50:18

            Challenges & Opportunities in Lifelong Reinforcement Learning

            Katja Hofmann, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Multi-fidelity zero-shot HPO
            01:11

            Multi-fidelity zero-shot HPO

            Fela Winkelmolen, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Opening Remarks
            03:45

            Opening Remarks

            Anna Choromanska, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Faster Graph Embeddings via Coarsening
            15:30

            Faster Graph Embeddings via Coarsening

            Matthew Fahrbach, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            GradientDICE: Rethinking Generalized Offline Estimation of Stationary Values
            12:27

            GradientDICE: Rethinking Generalized Offline Estimation of Stationary Values

            Shangtong Zhang, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Do RNN and LSTM have Long Memory?
            14:43

            Do RNN and LSTM have Long Memory?

            Jingyu Zhao, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2020 folgen