Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Multi-Agent Routing Value Iteration Network (MARVIN)
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-004-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-004-alpha.b-cdn.net
      • sl-yoda-v2-stream-004-beta.b-cdn.net
      • 1685195716.rsc.cdn77.org
      • 1239898752.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Multi-Agent Routing Value Iteration Network (MARVIN)
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Multi-Agent Routing Value Iteration Network (MARVIN)

            Jul 12, 2020

            Sprecher:innen

            QS

            Quinlan Sykora

            Sprecher:in · 0 Follower:innen

            MR

            Mengye Ren

            Sprecher:in · 1 Follower:in

            RU

            Raquel Urtasun

            Sprecher:in · 3 Follower:innen

            Über

            Multi-agent coordination and routing is a complex problem and has a wide range of applications in areas from vehicle fleet coordination to autonomous mapping. Whereas traditional methods are not designed for realistic environments such as sparse connectivity and unknown traffics and are often slow in runtime; in this paper, we propose a graph neural network based model that is able to perform multiagent routing in a sparsely connected graph with dynamically changing traffic conditions, outperfor…

            Organisator

            I2
            I2

            ICML 2020

            Konto · 2,6k Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Evolutionary Reinforcement Learning for Sample-Efficient Multiagent Cooperation
            15:53

            Evolutionary Reinforcement Learning for Sample-Efficient Multiagent Cooperation

            Somdeb Majumdar, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Too Relaxed to Be Fair
            14:35

            Too Relaxed to Be Fair

            Michael Lohaus, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Duality in vv-RKHSs with Infinite Dimensional Outputs: Application to Robust Losses
            14:35

            Duality in vv-RKHSs with Infinite Dimensional Outputs: Application to Robust Losses

            Pierre Laforgue, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Submodular Optimization: From Discrete to Continuous and Back - Part II
            45:14

            Submodular Optimization: From Discrete to Continuous and Back - Part II

            Hamed Hassani, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            DRWR: A Differentiable Renderer without Rendering for Unsupervised 3D Structure Learning from Silhouette Images
            13:19

            DRWR: A Differentiable Renderer without Rendering for Unsupervised 3D Structure Learning from Silhouette Images

            Zhizhong Han, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Invited talk 4

            Invertible Workshop Innf

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2020 folgen