Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Contrastive Multi-View Representation Learning on Graphs
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-011-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-011-alpha.b-cdn.net
      • sl-yoda-v3-stream-011-beta.b-cdn.net
      • 1150868944.rsc.cdn77.org
      • 1511650057.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Contrastive Multi-View Representation Learning on Graphs
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Contrastive Multi-View Representation Learning on Graphs

            Jul 12, 2020

            Sprecher:innen

            KH

            Kaveh Hassani

            Řečník · 0 sledujících

            AHK

            Amir Hosein Khasahmadi

            Řečník · 0 sledujících

            Über

            We introduce a model for self-supervised representation learning on both node and graph level based on InfoMax by maximizing the mutual information between spatial and spectral views of a graph. We evaluate our model on three node classification and five graph classification benchmarks and show that it achieves state-of-the-art results on all datasets and narrows the gap between supervised and unsupervised models.…

            Organisator

            I2
            I2

            ICML 2020

            Účet · 2,7k sledujících

            Kategorien

            Matematika

            Kategorie · 2,4k prezentací

            Umělá inteligence a data science

            Kategorie · 10,8k prezentací

            Über ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Logarithmic Regret for Online Control
            14:47

            Logarithmic Regret for Online Control

            Dylan J. Foster, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Overfitting in adversarially robust deep learning
            14:43

            Overfitting in adversarially robust deep learning

            Leslie Rice, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            On the Global Convergence Rates of Softmax Policy Gradient Methods
            15:45

            On the Global Convergence Rates of Softmax Policy Gradient Methods

            Jincheng Mei, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Why are learned indexes so effective?
            13:22

            Why are learned indexes so effective?

            Paolo Ferragina, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Soft Threshold Weight Reparameterization for Learnable Sparsity
            14:24

            Soft Threshold Weight Reparameterization for Learnable Sparsity

            Aditya Kusupati, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Efficient Robustness Certificates for Discrete Data: Sparsity-Aware Randomized Smoothing for Graphs, Images and More
            13:30

            Efficient Robustness Certificates for Discrete Data: Sparsity-Aware Randomized Smoothing for Graphs, Images and More

            Aleksandar Bojchevski, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? ICML 2020 folgen