Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Median Matrix Completion: from Embarrassment to Optimality
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-011-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-011-alpha.b-cdn.net
      • sl-yoda-v3-stream-011-beta.b-cdn.net
      • 1150868944.rsc.cdn77.org
      • 1511650057.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Median Matrix Completion: from Embarrassment to Optimality
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Median Matrix Completion: from Embarrassment to Optimality

            Jul 12, 2020

            Sprecher:innen

            XM

            Xiaojun Mao

            Řečník · 0 sledujících

            WL

            Weidong Liu

            Řečník · 0 sledujících

            RKWW

            Raymond K. W. Wong

            Řečník · 0 sledujících

            Über

            In this paper, we consider matrix completion with absolute deviation loss and obtain an estimator of the median matrix. Despite several appealing properties of median, the non-smooth absolute deviation loss leads to computational challenge for large-scale data sets which are increasingly common among matrix completion problems. A simple solution to large-scale problems is parallel computing. However, embarrassingly parallel fashion often leads to inefficient estimators. Based on the idea of pseu…

            Organisator

            I2
            I2

            ICML 2020

            Účet · 2,7k sledujících

            Kategorien

            Matematika

            Kategorie · 2,4k prezentací

            Umělá inteligence a data science

            Kategorie · 10,8k prezentací

            Über ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            PDO-eConvs: Partial Differential Operator Based Equivariant Convolutions
            12:12

            PDO-eConvs: Partial Differential Operator Based Equivariant Convolutions

            Zhengyang Shen, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Successful Data Science in Production Systems: It’s All About Assumptions
            40:53

            Successful Data Science in Production Systems: It’s All About Assumptions

            Nevena Lalic

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Learning Similarity Metrics for Numerical Simulations
            15:16

            Learning Similarity Metrics for Numerical Simulations

            Georg Kohl, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Model-based Adversarial Meta-Reinforcement Learning
            05:34

            Model-based Adversarial Meta-Reinforcement Learning

            Guangwen Yang, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Machine Learning for Scientific Discovery
            49:56

            Machine Learning for Scientific Discovery

            Sendhil Mullainathan, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Modeling the Semantics of Data Sources with Graph Neural Networks
            05:31

            Modeling the Semantics of Data Sources with Graph Neural Networks

            Giuseppe Futia, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? ICML 2020 folgen