Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Context-aware Dynamics Model for Generalization in Model-Based Reinforcement Learning
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-004-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-004-alpha.b-cdn.net
      • sl-yoda-v2-stream-004-beta.b-cdn.net
      • 1685195716.rsc.cdn77.org
      • 1239898752.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Context-aware Dynamics Model for Generalization in Model-Based Reinforcement Learning
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Context-aware Dynamics Model for Generalization in Model-Based Reinforcement Learning

            Jul 12, 2020

            Sprecher:innen

            KL

            Kimin Lee

            Sprecher:in · 0 Follower:innen

            YS

            Younggyo Seo

            Sprecher:in · 0 Follower:innen

            SL

            Seunghyun Lee

            Sprecher:in · 0 Follower:innen

            Über

            Model-based reinforcement learning (RL) enjoys several benefits, such as data-efficiency and planning, by learning a model of the environment's dynamics. However, learning a global model that can generalize across different dynamics remains a challenge. To tackle this problem, we decompose the task of learning a global dynamics model into two stages: (a) learning a context latent vector that captures the local dynamics, then (b) predicting the next state conditioned on it. In order to encode dyn…

            Organisator

            I2
            I2

            ICML 2020

            Konto · 2,7k Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            The Tree Ensemble Layer: Differentiability meets Conditional Computation
            15:06

            The Tree Ensemble Layer: Differentiability meets Conditional Computation

            Hussein Hazimeh, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Spotlights Set 1

            Workshop CompBio

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Debiasing Evaluations That are Biased by Evaluations
            12:12

            Debiasing Evaluations That are Biased by Evaluations

            Jingyan Wang, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Graph Random Neural Features for Distance-Preserving Graph Representations
            13:09

            Graph Random Neural Features for Distance-Preserving Graph Representations

            Daniele Zambon, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning What to Defer for Maximum Independent Sets
            14:47

            Learning What to Defer for Maximum Independent Sets

            Sungsoo Ahn, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Bidirectional Model-based Policy Optimization
            15:34

            Bidirectional Model-based Policy Optimization

            Hang Lai, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2020 folgen