Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Invariant Rationalization
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-013-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-013-alpha.b-cdn.net
      • sl-yoda-v3-stream-013-beta.b-cdn.net
      • 1668715672.rsc.cdn77.org
      • 1420896597.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Invariant Rationalization
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Invariant Rationalization

            Jul 12, 2020

            Sprecher:innen

            SC

            Shiyu Chang

            Řečník · 0 sledujících

            YZ

            Yang Zhang

            Řečník · 1 sledující

            MY

            Mo Yu

            Řečník · 0 sledujících

            Über

            Selective rationalization improves neural network interpretability by identifying a small subset of input features — the rationale — that best explains or supports the prediction. A typical rationalization criterion, i.e. maximum mutual information (MMI), finds the rationale that maximizes the prediction performance based only on the rationale. However, MMI can be problematic because it picks up spurious correlations between the input features and the output. Instead, we introduce a game-theoret…

            Organisator

            I2
            I2

            ICML 2020

            Účet · 2,6k sledujících

            Kategorien

            Programování a vývoj software

            Kategorie · 1,0k prezentací

            Matematika

            Kategorie · 2,4k prezentací

            Umělá inteligence a data science

            Kategorie · 10,8k prezentací

            Über ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            The k-tied Normal Distribution: A Compact Parameterization of Gaussian Mean Field Posteriors in Bayesian Neural Networks
            13:13

            The k-tied Normal Distribution: A Compact Parameterization of Gaussian Mean Field Posteriors in Bayesian Neural Networks

            Jakub Swiatkowski, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Intrinsic Reward Driven Imitation Learning via Generative Model
            11:57

            Intrinsic Reward Driven Imitation Learning via Generative Model

            Xingrui Yu, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Model-Based Methods in Reinforcement Learning - Part 2: Model-based Control
            48:45

            Model-Based Methods in Reinforcement Learning - Part 2: Model-based Control

            Igor Mordatch, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 2 diváků, což je 0.2 %

            SurVAE Flows: Unifying VAEs and Flows into one Framework
            39:27

            SurVAE Flows: Unifying VAEs and Flows into one Framework

            Max Welling

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Learning the Locomotion Behaviour of Lizards Transfers Across Environments
            04:52

            Learning the Locomotion Behaviour of Lizards Transfers Across Environments

            Kathleen L. Foster, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Layered Sampling for Robust Optimization Problems
            12:59

            Layered Sampling for Robust Optimization Problems

            Hu Ding, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? ICML 2020 folgen