Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Structured Linear Contextual Bandits: A Sharp and Geometric Smoothed Analysis
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-016-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-016-alpha.b-cdn.net
      • sl-yoda-v3-stream-016-beta.b-cdn.net
      • 1504562137.rsc.cdn77.org
      • 1896834465.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Structured Linear Contextual Bandits: A Sharp and Geometric Smoothed Analysis
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Structured Linear Contextual Bandits: A Sharp and Geometric Smoothed Analysis

            Jul 12, 2020

            Sprecher:innen

            VS

            Vidyashankar Sivakumar

            Sprecher:in · 0 Follower:innen

            ZSW

            Zhiwei Steven Wu

            Sprecher:in · 0 Follower:innen

            AB

            Arindam Banerjee

            Sprecher:in · 0 Follower:innen

            Über

            Bandit learning algorithms typically involve the balance of exploration and exploitation. However, in many practical applications, worst-case scenarios needing systematic exploration are seldom encountered. In this work, we consider a smoothed setting for structured linear contextual bandits where the adversarial contexts are perturbed by Gaussian noise and the unknown parameter θ^* has structure, e.g., sparsity, group sparsity, low rank, etc. We propose simple greedy algorithms for both the sin…

            Organisator

            I2
            I2

            ICML 2020

            Konto · 2,7k Follower:innen

            Kategorien

            Mathematik

            Kategorie · 2,4k Präsentationen

            Über ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            UniKER: A Unified Framework for Combining Embedding and Horn Rules for Knowledge Graph Inference
            04:08

            UniKER: A Unified Framework for Combining Embedding and Horn Rules for Knowledge Graph Inference

            Kewei Cheng, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Opening Remarks
            12:01

            Opening Remarks

            Sungjin Ahn, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning From Irregularly-Sampled Time Series: A Missing Data Perspective
            14:25

            Learning From Irregularly-Sampled Time Series: A Missing Data Perspective

            Benjamin Marlin, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Closing the convergence gap of SGD without replacement
            12:44

            Closing the convergence gap of SGD without replacement

            Shashank Rajput, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            What we learned from Argoverse Competitions
            39:08

            What we learned from Argoverse Competitions

            Jagjeet Singh, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            A Benchmark of Medical Out of Distribution Detection
            08:10

            A Benchmark of Medical Out of Distribution Detection

            Tianshi Cao, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2020 folgen