Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: An Optimistic Perspective on Offline Deep Reinforcement Learning
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-010-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-010-alpha.b-cdn.net
      • sl-yoda-v2-stream-010-beta.b-cdn.net
      • 1759419103.rsc.cdn77.org
      • 1016618226.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            An Optimistic Perspective on Offline Deep Reinforcement Learning
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            An Optimistic Perspective on Offline Deep Reinforcement Learning

            Jul 12, 2020

            Sprecher:innen

            RA
            RA

            Rishabh Agarwal

            Řečník · 2 sledující

            DS

            Dale Schuurmans

            Řečník · 2 sledující

            MN

            Mohammad Norouzi

            Řečník · 1 sledující

            Über

            Off-policy reinforcement learning (RL) using a fixed offline dataset of logged interactions is an important consideration in real world applications. This paper studies offline RL using the DQN replay dataset comprising the entire replay experience of a DQN agent on 60 Atari 2600 games. We demonstrate that recent off-policy deep RL algorithms, even when trained solely on this replay dataset, outperform the fully trained DQN agent. To enhance generalization in the offline setting, we present Rand…

            Organisator

            I2
            I2

            ICML 2020

            Účet · 2,7k sledujících

            Kategorien

            Umělá inteligence a data science

            Kategorie · 10,8k prezentací

            Über ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Step-size Adaptation Using Exponentiated Gradient Updates
            06:37

            Step-size Adaptation Using Exponentiated Gradient Updates

            Ehsan Amid, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            VFlow: More Expressive Generative Flows with Variational Data Augmentation
            14:55

            VFlow: More Expressive Generative Flows with Variational Data Augmentation

            Jianfei Chen, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Sharp Composition Bounds for Gaussian Differential Privacy via Edgeworth Expansion
            12:45

            Sharp Composition Bounds for Gaussian Differential Privacy via Edgeworth Expansion

            Qinqing Zheng, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Constructive universal high-dimensional distribution generation through deep ReLU networks
            15:27

            Constructive universal high-dimensional distribution generation through deep ReLU networks

            Dmytro Perekrestenko, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Speaker Panel
            59:20

            Speaker Panel

            Csaba Szepesvari, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Contributed Talk 3 - Talk

            Sungjin Ahn, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? ICML 2020 folgen