Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Improved Bounds on Minimax Regret under Logarithmic Loss via Self-Concordance
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-015-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-015-alpha.b-cdn.net
      • sl-yoda-v3-stream-015-beta.b-cdn.net
      • 1963568160.rsc.cdn77.org
      • 1940033649.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Improved Bounds on Minimax Regret under Logarithmic Loss via Self-Concordance
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Improved Bounds on Minimax Regret under Logarithmic Loss via Self-Concordance

            Jul 12, 2020

            Sprecher:innen

            BB

            Blair Bilodeau

            Sprecher:in · 0 Follower:innen

            DJF

            Dylan J. Foster

            Sprecher:in · 2 Follower:innen

            DMR

            Daniel M. Roy

            Sprecher:in · 0 Follower:innen

            Über

            We study the classical problem of forecasting under logarithmic loss while competing against an arbitrary class of experts. We present a novel approach to bounding the minimax regret that exploits the self-concordance property of logarithmic loss. Our regret bound depends on the metric entropy of the expert class and matches previous best known results for arbitrary expert classes. We improve the dependence on the time horizon for classes with metric entropy under the supremum norm of order Ω(γ…

            Organisator

            I2
            I2

            ICML 2020

            Konto · 2,7k Follower:innen

            Kategorien

            Informatik und IT

            Kategorie · 14,8k Präsentationen

            Über ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Opening Remarks
            12:01

            Opening Remarks

            Sungjin Ahn, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            p-Norm Flow Diffusion for Local Graph Clustering
            14:43

            p-Norm Flow Diffusion for Local Graph Clustering

            Kimon Fountoulakis, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Understanding Self-attention of Self-supervised Audio Transformers
            14:22

            Understanding Self-attention of Self-supervised Audio Transformers

            Shuwen Yang, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Analysis of Predictive Coding Models for Phonemic Representations in Small Datasets
            15:03

            Analysis of Predictive Coding Models for Phonemic Representations in Small Datasets

            María Andrea Cruz Blandón, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Invited Talk
            46:03

            Invited Talk

            Angela P Schoellig

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Training Linear Neural Networks: Non-Local Convergence and Complexity Results
            14:35

            Training Linear Neural Networks: Non-Local Convergence and Complexity Results

            Armin Eftekhari

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2020 folgen