Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Collaborative Machine Learning with Incentive-Aware Model Rewards
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-015-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-015-alpha.b-cdn.net
      • sl-yoda-v3-stream-015-beta.b-cdn.net
      • 1963568160.rsc.cdn77.org
      • 1940033649.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Collaborative Machine Learning with Incentive-Aware Model Rewards
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Collaborative Machine Learning with Incentive-Aware Model Rewards

            Jul 12, 2020

            Sprecher:innen

            RHLS

            Rachael Hwee Ling Sim

            Sprecher:in · 0 Follower:innen

            YZ

            Yehong Zhang

            Sprecher:in · 0 Follower:innen

            BK

            Bryan Kian

            Sprecher:in · 2 Follower:innen

            Über

            Collaborative machine learning (ML) is an appealing paradigm to build high-quality ML models by training on the aggregated data from many parties. However, these parties are only willing to share their data when given enough incentives, such as a guaranteed fair reward based on their contributions. This motivates the need for measuring a party's contribution and designing an incentive-aware reward scheme accordingly. This paper proposes to value a party's contribution based on Shapley value and…

            Organisator

            I2
            I2

            ICML 2020

            Konto · 210 Follower:innen

            Kategorien

            Recht und Politik

            Kategorie · 333 Präsentationen

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Transformation of ReLU-based recurrent neural networks from discrete-time to continuous-time
            15:56

            Transformation of ReLU-based recurrent neural networks from discrete-time to continuous-time

            Zahra Monfared, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Discussion Panel
            1:13:03

            Discussion Panel

            Krzysztof Dembczynski, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Welcome
            06:46

            Welcome

            Jessica Forde

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention
            13:31

            Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention

            Angelos Katharopoulos, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning Flat Latent Manifolds with VAEs
            10:12

            Learning Flat Latent Manifolds with VAEs

            Nutan Chen, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            "Algorithm-Performance Personas" for Siamese Meta-Learning and Automated Algorithn Selection
            01:26

            "Algorithm-Performance Personas" for Siamese Meta-Learning and Automated Algorithn Selection

            Bryan Tyrell, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2020 folgen