Category · 1.2k presentations
Category · 3.8k presentations
Category · 14.8k presentations
Category · 491 presentations
Category · 1.3k presentations
Category · 529 presentations
Category · 3.3k presentations
Category · 599 presentations
Jul 12, 2020
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
Sprecher:in · 2 Follower:innen
Sprecher:in · 0 Follower:innen
Collaborative machine learning (ML) is an appealing paradigm to build high-quality ML models by training on the aggregated data from many parties. However, these parties are only willing to share their data when given enough incentives, such as a guaranteed fair reward based on their contributions. This motivates the need for measuring a party's contribution and designing an incentive-aware reward scheme accordingly. This paper proposes to value a party's contribution based on Shapley value and information gain on model parameters given its data. Subsequently, we give each party a model as a reward. To formally incentivize the collaboration, we define some desirable properties (e.g., fairness and stability) which are inspired by cooperative game theory but adapted for our model reward that is uniquely freely replicable. Then, we propose a novel model reward scheme to satisfy minimum fairness and trade off between the desirable properties via an adjustable parameter. The value of each party's model reward determined by our scheme is attained by injecting Gaussian noise to the aggregated training data with an optimized noise variance. We empirically demonstrate interesting properties of our scheme and evaluate its performance using synthetic and real-world datasets.Collaborative machine learning (ML) is an appealing paradigm to build high-quality ML models by training on the aggregated data from many parties. However, these parties are only willing to share their data when given enough incentives, such as a guaranteed fair reward based on their contributions. This motivates the need for measuring a party's contribution and designing an incentive-aware reward scheme accordingly. This paper proposes to value a party's contribution based on Shapley value and…
Kategorie · 333 Präsentationen
Kategorie · 10,8k Präsentationen
The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.
Professionelle Aufzeichnung und Livestreaming – weltweit.
Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind
Nutan Chen, …
Bryan Tyrell, …