Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-007-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-007-alpha.b-cdn.net
      • sl-yoda-v2-stream-007-beta.b-cdn.net
      • 1678031076.rsc.cdn77.org
      • 1932936657.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs

            Dez 6, 2020

            Sprecher:innen

            JZ

            Jiong Zhu

            Sprecher:in · 0 Follower:innen

            YY

            Yujun Yan

            Sprecher:in · 0 Follower:innen

            LZ

            Lingxiao Zhao

            Sprecher:in · 0 Follower:innen

            Organisator

            N2
            N2

            NeurIPS 2020

            Konto · 11,5k Follower:innen

            Kategorien

            Webentwicklung und UX-/UI

            Kategorie · 1,2k Präsentationen

            Bildende Kunst und Grafikdesign

            Kategorie · 333 Präsentationen

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über NeurIPS 2020

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            It Doesn’t Get Better and Here’s Why: A Fundamental Drawback in Natural Extensions of UCB to Multi-agent Bandits
            03:25

            It Doesn’t Get Better and Here’s Why: A Fundamental Drawback in Natural Extensions of UCB to Multi-agent Bandits

            Udari Madhushani, …

            N2
            N2
            NeurIPS 2020 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Information Theoretic Regret Bounds for Online Nonlinear Control
            03:18

            Information Theoretic Regret Bounds for Online Nonlinear Control

            Sham M. Kakade, …

            N2
            N2
            NeurIPS 2020 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Geometric Deep Learning for computational protein design
            35:38

            Geometric Deep Learning for computational protein design

            Michael M. Bronstein, …

            N2
            N2
            NeurIPS 2020 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Multimodal Graph Networks for Compositional Generalization in Visual Question Answering
            03:11

            Multimodal Graph Networks for Compositional Generalization in Visual Question Answering

            Raeid Saqur, …

            N2
            N2
            NeurIPS 2020 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Practical limitations of today's deep learning in healthcare
            53:31

            Practical limitations of today's deep learning in healthcare

            Andrew Ng

            N2
            N2
            NeurIPS 2020 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Using StyleGANs for Visual Interpretability of Deep Learning Models on Medical Images
            09:40

            Using StyleGANs for Visual Interpretability of Deep Learning Models on Medical Images

            Kathryn Schutte, …

            N2
            N2
            NeurIPS 2020 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2020 folgen