Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: A Deep Learning Based Cost Model for Automatic Code Optimization
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-011-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-011-alpha.b-cdn.net
      • sl-yoda-v3-stream-011-beta.b-cdn.net
      • 1150868944.rsc.cdn77.org
      • 1511650057.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            A Deep Learning Based Cost Model for Automatic Code Optimization
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            A Deep Learning Based Cost Model for Automatic Code Optimization

            Apr 4, 2021

            Sprecher:innen

            RB

            Riyadh Baghdadi

            Sprecher:in · 0 Follower:innen

            MM

            Massinissa Merouani

            Sprecher:in · 0 Follower:innen

            ML

            Mohamed-Hicham Leghettas

            Sprecher:in · 0 Follower:innen

            Über

            Enabling compilers to automatically optimize code has been a longstanding goal for the compiler community. Efficiently solving this problem requires using precise cost models. These models predict whether applying a sequence of code transformations reduces the execution time of the program. Building an analytical cost model to do so is hard in modern x86 architectures due to the complexity of the microarchitecture. In this paper, we present a novel deep learning based cost model for automatic co…

            Organisator

            M2
            M2

            MLSys 2021

            Konto · 159 Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Software und Programmierung

            Kategorie · 1k Präsentationen

            Über MLSys 2021

            The Conference on Machine Learning and Systems targets research at the intersection of machine learning and systems. The conference aims to elicit new connections amongst these fields, including identifying best practices and design principles for learning systems, as well as developing novel learning methods and theory tailored to practical machine learning workflows.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            From Recommender Systems to Natural Language Processing and Back Again
            58:21

            From Recommender Systems to Natural Language Processing and Back Again

            Julian McAuley

            M2
            M2
            MLSys 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Doping: A technique for Extreme Compression of LSTM Models using Sparse Structured Additive Matrices
            04:22

            Doping: A technique for Extreme Compression of LSTM Models using Sparse Structured Additive Matrices

            Urmish Thakker, …

            M2
            M2
            MLSys 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Session 9: Hardware
            2:12:48

            Session 9: Hardware

            M2
            M2
            MLSys 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Oral: IOS: Inter-Operator Scheduler for CNN Acceleration
            18:27

            Oral: IOS: Inter-Operator Scheduler for CNN Acceleration

            Yaoyao Ding, …

            M2
            M2
            MLSys 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning on Distributed Traces for Data Center Storage Systems
            04:57

            Learning on Distributed Traces for Data Center Storage Systems

            Giulio Zhou, …

            M2
            M2
            MLSys 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Oral: TT-Rec: Tensor Train Compression for Deep Learning Recommendation Model Embeddings
            23:05

            Oral: TT-Rec: Tensor Train Compression for Deep Learning Recommendation Model Embeddings

            Chunxing Yin, …

            M2
            M2
            MLSys 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? MLSys 2021 folgen