Diff. Private Submodular Max. Under Matroid and Knapsack Constraints

Apr 14, 2021

Speakers

About

Numerous tasks in machine learning and artificial intelligence have been modeled as submodular maximization problems. These problems usually involve sensitive data about individuals, and in addition to maximizing the utility, privacy concerns should be considered. In this paper, we study the general framework of non-negative monotone submodular maximization subject to matroid or knapsack constraints in both offline and online settings. For the offline setting, we propose a differentially private $(1-\frac{\kappa}{e})$-approximation algorithm, where $\kappa\in[0,1]$ is the total curvature of the submodular set function, which improves upon prior works in terms of approximation guarantee and query complexity under the same privacy budget. In the online setting, we propose the first differentially private algorithm, and we specify the conditions under which the regret bound scales as $\O(\sqrt{T})$, i.e., privacy could be ensured for free.

Organizer

About AISTATS 2021

The 24th International Conference on Artificial Intelligence and Statistics was held virtually from Tuesday, 13 April 2021 to Thursday, 15 April 2021.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

Sharing

Recommended Videos

Presentations on similar topic, category or speaker