Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Learning to Represent Action Values as a Hypergraph on the Action Vertices
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-010-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-010-alpha.b-cdn.net
      • sl-yoda-v2-stream-010-beta.b-cdn.net
      • 1759419103.rsc.cdn77.org
      • 1016618226.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Learning to Represent Action Values as a Hypergraph on the Action Vertices
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Learning to Represent Action Values as a Hypergraph on the Action Vertices

            Mai 3, 2021

            Sprecher:innen

            AT

            Arash Tavakoli

            Řečník · 0 sledujících

            MF

            Mehdi Fatemi

            Řečník · 0 sledujících

            PK

            Petar Kormushev

            Řečník · 0 sledujících

            Über

            Action-value estimation is a critical component of many reinforcement learning (RL) methods whereby sample complexity relies heavily on how fast a good estimator for action value can be learned. By viewing this problem through the lens of representation learning, good representations of both state and action can facilitate action-value estimation. While advances in deep learning have seamlessly driven progress in learning state representations, given the specificity of the notion of agency to RL…

            Organisator

            I2
            I2

            ICLR 2021

            Účet · 897 sledujících

            Kategorien

            Umělá inteligence a data science

            Kategorie · 10,8k prezentací

            Über ICLR 2021

            The International Conference on Learning Representations (ICLR) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence called representation learning, but generally referred to as deep learning. ICLR is globally renowned for presenting and publishing cutting-edge research on all aspects of deep learning used in the fields of artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, text understanding, gaming, and robotics.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Improve Object Detection with Feature-based Knowledge Distillation: Towards Accurate and Efficient Detectors
            03:50

            Improve Object Detection with Feature-based Knowledge Distillation: Towards Accurate and Efficient Detectors

            Linfeng Zhang, …

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Ask & Explore: Grounded Question Answering for Curiosity-driven exploration
            05:02

            Ask & Explore: Grounded Question Answering for Curiosity-driven exploration

            Jivat Neet Kaur, …

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Adversarial Examples for Self-Driving
            40:29

            Adversarial Examples for Self-Driving

            Raquel Urtasun

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Ask Your Humans: Using Human Instructions to Improve Generalization in Reinforcement Learning
            05:04

            Ask Your Humans: Using Human Instructions to Improve Generalization in Reinforcement Learning

            Valerie Chen, …

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Oral Session 8 - Q&A 3
            11:05

            Oral Session 8 - Q&A 3

            Anand Gopalakrishnan, …

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Learning to Generate 3D Shapes with Generative Cellular Automata
            05:24

            Learning to Generate 3D Shapes with Generative Cellular Automata

            Dongsu Zhang, …

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? ICLR 2021 folgen