Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Return-Based Contrastive Representation Learning for Reinforcement Learning
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-009-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-009-alpha.b-cdn.net
      • sl-yoda-v2-stream-009-beta.b-cdn.net
      • 1766500541.rsc.cdn77.org
      • 1441886916.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Return-Based Contrastive Representation Learning for Reinforcement Learning
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Return-Based Contrastive Representation Learning for Reinforcement Learning

            Mai 3, 2021

            Sprecher:innen

            GL

            Guoqing Liu

            Řečník · 0 sledujících

            CZ

            Chuheng Zhang

            Řečník · 0 sledujících

            LZ

            Li Zhao

            Řečník · 0 sledujících

            Über

            Recently, various auxiliary tasks have been proposed to accelerate representation learning and improve sample efficiency in deep reinforcement learning (RL). However, existing auxiliary tasks do not take the characteristics of RL problems into consideration and are unsupervised. By leveraging returns, the most important feedback signals in RL, we propose a novel auxiliary task that forces the learnt representations to discriminate state-action pairs with different returns. Our auxiliary loss is…

            Organisator

            I2
            I2

            ICLR 2021

            Účet · 906 sledujících

            Über ICLR 2021

            The International Conference on Learning Representations (ICLR) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence called representation learning, but generally referred to as deep learning. ICLR is globally renowned for presenting and publishing cutting-edge research on all aspects of deep learning used in the fields of artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, text understanding, gaming, and robotics.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Closing remarks
            00:34

            Closing remarks

            Xavier Boix

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Structure Leaning and the Hippocampal-Entorhinal Circuit
            34:41

            Structure Leaning and the Hippocampal-Entorhinal Circuit

            Kimberly Stachenfeld

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Learning Task-General Representations with Generative Neuro-Symbolic Modeling
            06:13

            Learning Task-General Representations with Generative Neuro-Symbolic Modeling

            Reuben Feinman, …

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            DICE: Diversity In Deep Ensembles Via Conditional Redundancy Adversarial Estimation
            05:11

            DICE: Diversity In Deep Ensembles Via Conditional Redundancy Adversarial Estimation

            Alexandre Ramé, …

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Representation Learning For Improved Interpretability And Classification Accuracy Of Clinical Factors From EEG
            04:43

            Representation Learning For Improved Interpretability And Classification Accuracy Of Clinical Factors From EEG

            Garrett Honke, …

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Invited Talk - Kyu Jin Cho
            1:30:48

            Invited Talk - Kyu Jin Cho

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? ICLR 2021 folgen