Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Detecting Anomalous Event Sequences with Temporal Point Processes
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-006-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-006-alpha.b-cdn.net
      • sl-yoda-v2-stream-006-beta.b-cdn.net
      • 1549480416.rsc.cdn77.org
      • 1102696603.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Detecting Anomalous Event Sequences with Temporal Point Processes
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Detecting Anomalous Event Sequences with Temporal Point Processes

            Dez 6, 2021

            Sprecher:innen

            OS

            Oleksandr Shchur

            Sprecher:in · 1 Follower:in

            ACT

            Ali Caner Türkmen

            Sprecher:in · 0 Follower:innen

            TJ

            Tim Januschowski

            Sprecher:in · 0 Follower:innen

            Über

            Automatically detecting anomalies in event data can provide substantial value in domains such as healthcare, DevOps, and information security. In this paper, we frame the problem of detecting anomalous continuous-time event sequences as out-of-distribution (OOD) detection for temporal point processes (TPPs). First, we show how this problem can be approached using goodness-of-fit (GoF) tests. We then demonstrate the limitations of popular GoF statistics for TPPs and propose a new test that addres…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Multiple Instance Learning for Brain Tumor Detection with Magnetic Resonance Spectroscopy Data
            05:17

            Multiple Instance Learning for Brain Tumor Detection with Magnetic Resonance Spectroscopy Data

            Diyuan Lu, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Multi-Scale Representation Learning on Proteins
            11:36

            Multi-Scale Representation Learning on Proteins

            Vignesh Ram Somnath, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Coresets for Time Series Clustering
            15:19

            Coresets for Time Series Clustering

            Lingxiao Huang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Test-optional Policies: Overcoming Strategic Behavior and Informational Gaps
            07:52

            Test-optional Policies: Overcoming Strategic Behavior and Informational Gaps

            Zhi Liu, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Statistical Decidability in Confounded, Linear, Non-Gaussian Models
            14:07

            Statistical Decidability in Confounded, Linear, Non-Gaussian Models

            Konstantin Genin

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning with Noisy Correspondence for Cross-modal Matching
            15:11

            Learning with Noisy Correspondence for Cross-modal Matching

            Zhenyu Huang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen