Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Space-time Mixing Attention for Video Transformer
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-009-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-009-alpha.b-cdn.net
      • sl-yoda-v2-stream-009-beta.b-cdn.net
      • 1766500541.rsc.cdn77.org
      • 1441886916.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Space-time Mixing Attention for Video Transformer
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Space-time Mixing Attention for Video Transformer

            Dez 6, 2021

            Sprecher:innen

            AB

            Adrian Bulat

            Sprecher:in · 0 Follower:innen

            JP

            Juan-Manuel Pérez-Rúa

            Sprecher:in · 0 Follower:innen

            SS

            Swathikiran Sudhakaran

            Sprecher:in · 0 Follower:innen

            Über

            This paper is on video recognition using Transformers. Very recent attempts in this area have demonstrated promising results in terms of recognition accuracy, yet they have been also shown to induce, in many cases, significant computational overheads due to the additional modelling of the temporal information. In this work, we propose a Video Transformer model the complexity of which scales linearly with the number of frames in the video sequence and hence induces no overhead compared to an imag…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Collaborative Uncertainty in Multi-Agent Trajectory Forecasting
            07:15

            Collaborative Uncertainty in Multi-Agent Trajectory Forecasting

            Bohan Tang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Considering Data, Evaluation and Diversity to Understand Information Disorders in Social Media
            31:26

            Considering Data, Evaluation and Diversity to Understand Information Disorders in Social Media

            Barbara Poblete

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Compressing Pre-trained Language Models using Progressive Low Rank Decomposition
            04:51

            Compressing Pre-trained Language Models using Progressive Low Rank Decomposition

            Habib Hajimolahoseini, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Classic examples of  engineering responsibility
            09:01

            Classic examples of engineering responsibility

            Deborah Raji

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Unintended Selection: Persistent Qualification Rate Disparities and Interventions
            15:04

            Unintended Selection: Persistent Qualification Rate Disparities and Interventions

            Reilly Raab, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            CLUES: Few-Shot Learning Evaluation in NLU
            05:02

            CLUES: Few-Shot Learning Evaluation in NLU

            Subhabrata Mukherjee, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen