Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: BulletTrain: Accelerating Robust Neural Network Training via Boundary Example Mining
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-012-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-012-alpha.b-cdn.net
      • sl-yoda-v3-stream-012-beta.b-cdn.net
      • 1338956956.rsc.cdn77.org
      • 1656830687.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            BulletTrain: Accelerating Robust Neural Network Training via Boundary Example Mining
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            BulletTrain: Accelerating Robust Neural Network Training via Boundary Example Mining

            Dez 6, 2021

            Sprecher:innen

            WH

            Weizhe Hua

            Řečník · 0 sledujících

            YZ

            Yichi Zhang

            Řečník · 1 sledující

            CG

            Chuan Guo

            Řečník · 2 sledující

            Über

            Neural network robustness has become a central topic in machine learning in recent years. Most training algorithms that improve the model's robustness to adversarial and common corruptions also introduce a large computational overhead, requiring as many as ten times the number of forward and backward passes in order to converge. To combat this inefficiency, we propose BulletTrain, a boundary example mining technique to drastically reduce the computational cost of robust training. Our key observa…

            Organisator

            N2
            N2

            NeurIPS 2021

            Účet · 1,9k sledujících

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Information Directed Sampling for Sparse Linear Bandits
            10:32

            Information Directed Sampling for Sparse Linear Bandits

            Botao Hao, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            ML in urban planning panel
            54:36

            ML in urban planning panel

            Aditya Mate, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Q&A
            20:14

            Q&A

            Karen A. McKinnon, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            TD | Panel Discussion
            51:51

            TD | Panel Discussion

            Thomas Gilbert, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Agent Modelling under Partial Observability for Deep Reinforcement Learning
            13:22

            Agent Modelling under Partial Observability for Deep Reinforcement Learning

            Georgios Papoudakis, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Low-Fidelity Video Encoder Optimization for Temporal Action Localization
            14:34

            Low-Fidelity Video Encoder Optimization for Temporal Action Localization

            Mengmeng Xu, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen