Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Solving Soft Clustering Ensemble via k-Sparse Discrete Wasserstein Barycenter
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-014-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-014-alpha.b-cdn.net
      • sl-yoda-v3-stream-014-beta.b-cdn.net
      • 1978117156.rsc.cdn77.org
      • 1243944885.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Solving Soft Clustering Ensemble via k-Sparse Discrete Wasserstein Barycenter
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Solving Soft Clustering Ensemble via k-Sparse Discrete Wasserstein Barycenter

            Dez 6, 2021

            Sprecher:innen

            RQ

            Ruizhe Qin

            Řečník · 0 sledujících

            ML

            Mengying Li

            Řečník · 0 sledujících

            HD

            Hu Ding

            Řečník · 0 sledujících

            Über

            Clustering ensemble is one of the most important problems in ensemble learning. Though it has been extensively studied in the past decades, the existing methods often suffer from the issues like high computational complexity and the difficulty on understanding the consensus. In this paper, we study the more general soft clustering ensemble problem where each individual solution is a soft clustering. We connect it to the well-known discrete Wasserstein barycenter problem in geometry. Based on som…

            Organisator

            N2
            N2

            NeurIPS 2021

            Účet · 1,9k sledujících

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices
            11:39

            Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices

            Federico López, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Optimal Representations for Covariate Shifts
            04:54

            Optimal Representations for Covariate Shifts

            Yangjun Ruan, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            The Reflective Explorer: Online Meta-Exploration from Offline Data in Realistic Robotic Tasks
            02:23

            The Reflective Explorer: Online Meta-Exploration from Offline Data in Realistic Robotic Tasks

            Rafael Rafailov, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Fine-Grained Analysis of Inductive Matrix Completion
            14:33

            Fine-Grained Analysis of Inductive Matrix Completion

            Antoine Ledent, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support
            08:19

            KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support

            Pierre Glaser, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Well-tuned Simple Nets can Excel on Tabular Data
            09:15

            Well-tuned Simple Nets can Excel on Tabular Data

            Arlind Kadra, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen