Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Non-approximate Inference for Collective Graphical Models on Path Graphs via Discrete Difference of Convex Algorithm
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-016-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-016-alpha.b-cdn.net
      • sl-yoda-v3-stream-016-beta.b-cdn.net
      • 1504562137.rsc.cdn77.org
      • 1896834465.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Non-approximate Inference for Collective Graphical Models on Path Graphs via Discrete Difference of Convex Algorithm
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Non-approximate Inference for Collective Graphical Models on Path Graphs via Discrete Difference of Convex Algorithm

            Dez 6, 2021

            Sprecher:innen

            YA

            Yasunori Akagi

            Řečník · 0 sledujících

            NM

            Naoki Marumo

            Řečník · 0 sledujících

            HK

            Hideaki Kim

            Řečník · 0 sledujících

            Über

            The importance of aggregated count data, which is calculated from the data of multiple individuals, continues to increase. Collective Graphical Model (CGM) is a probabilistic approach to the analysis of aggregated data. One of the most important operations in CGM is maximum a posteriori (MAP) inference of unobserved variables under given observations. Because the MAP inference problem for general CGMs has been shown to be NP-hard, an approach that solves an approximate problem has been proposed.…

            Organisator

            N2
            N2

            NeurIPS 2021

            Účet · 1,9k sledujících

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Adversarial Graph Augmentation to Improve Graph Contrastive Learning
            15:10

            Adversarial Graph Augmentation to Improve Graph Contrastive Learning

            Susheel Suresh, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            The Art of Gaussian Processes: Multioutput GPs
            17:29

            The Art of Gaussian Processes: Multioutput GPs

            César Lincoln C. Mattos, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Sample-Efficient Reinforcement Learning for Linearly-Parameterized MDPs with a Generative Model
            07:34

            Sample-Efficient Reinforcement Learning for Linearly-Parameterized MDPs with a Generative Model

            Bingyan Wang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Discussion panel: Compositional
            1:06:09

            Discussion panel: Compositional

            Judith E. Fan, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            MultiBench: Multiscale Benchmarks for Multimodal Representation Learning
            06:20

            MultiBench: Multiscale Benchmarks for Multimodal Representation Learning

            Paul Pu Liang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms
            05:14

            CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

            Martin Pawelczyk, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen