Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: How can classical multidimensional scaling go wrong?
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-016-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-016-alpha.b-cdn.net
      • sl-yoda-v3-stream-016-beta.b-cdn.net
      • 1504562137.rsc.cdn77.org
      • 1896834465.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            How can classical multidimensional scaling go wrong?
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            How can classical multidimensional scaling go wrong?

            Dez 6, 2021

            Sprecher:innen

            RS

            Rishi Sonthalia

            Sprecher:in · 0 Follower:innen

            GVB

            Greg Van Buskirk

            Sprecher:in · 0 Follower:innen

            BR

            Benjamin Raichel

            Sprecher:in · 0 Follower:innen

            Über

            Given a matrix D describing the pairwise dissimilarities of a data set, a common task is to embed the data points into Euclidean space. The classical multidimensional scaling (cMDS) algorithm is a widespread method to do this. However, theoretical analysis of the robustness of the algorithm and an in-depth analysis of its performance on non-Euclidean metrics is lacking. In this paper, we derive a formula, based on the eigenvalues of a matrix obtained from D, for the Frobenius norm of the differe…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Just Mix Once: Mixing Samples with Implicit Group Distribution
            04:46

            Just Mix Once: Mixing Samples with Implicit Group Distribution

            Giorgio Giannone, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Recursive Bayesian Networks: Generalising and Unifying Probabilistic Context-Free Grammars and Dynamic Bayesian Networks
            15:00

            Recursive Bayesian Networks: Generalising and Unifying Probabilistic Context-Free Grammars and Dynamic Bayesian Networks

            R. Lieck, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning Robust Hierarchical Patterns of Human Brain across Many fMRI Studies
            13:32

            Learning Robust Hierarchical Patterns of Human Brain across Many fMRI Studies

            Dushyant Sahoo, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Integrating single-cell multi-omic datasets with optimal transport
            28:13

            Integrating single-cell multi-omic datasets with optimal transport

            Pinar Demetci

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Towards a Shared Rubric for Dataset Annotation
            02:06

            Towards a Shared Rubric for Dataset Annotation

            Andrew Greene

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Ground-Truth, Whose Truth?: Examining the Challenges with Annotating Toxic Text Datasets
            01:56

            Ground-Truth, Whose Truth?: Examining the Challenges with Annotating Toxic Text Datasets

            Kofi Arhin, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen