Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: On Riemannian Optimization over Positive Definite Matrices with the Bures-Wasserstein Geometry
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-015-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-015-alpha.b-cdn.net
      • sl-yoda-v3-stream-015-beta.b-cdn.net
      • 1963568160.rsc.cdn77.org
      • 1940033649.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            On Riemannian Optimization over Positive Definite Matrices with the Bures-Wasserstein Geometry
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            On Riemannian Optimization over Positive Definite Matrices with the Bures-Wasserstein Geometry

            Dez 6, 2021

            Sprecher:innen

            AH

            Andi Han

            Sprecher:in · 0 Follower:innen

            BM

            Bamdev Mishra

            Sprecher:in · 0 Follower:innen

            PKJ

            Pratik Kumar Jawanpuria

            Sprecher:in · 0 Follower:innen

            Über

            In this paper, we comparatively analyze the Bures-Wasserstein (BW) geometry with the popular Affine-Invariant (AI) geometry for Riemannian optimization on the symmetric positive definite (SPD) matrix manifold. Our study begins with an observation that the BW metric has a linear dependence on SPD matrices in contrast to the quadratic dependence of the AI metric. We build on this to show that the BW metric is a more suitable and robust choice for several Riemannian optimization problems over ill-c…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Diversity is All You Need to Improve Bayesian Model Averaging
            06:31

            Diversity is All You Need to Improve Bayesian Model Averaging

            Yashvir Singh Grewal, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Scalable Intervention Target Estimation in Linear Models
            15:16

            Scalable Intervention Target Estimation in Linear Models

            Burak Varici, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Adversarial Robustness of Streaming Algorithms through Importance Sampling
            07:14

            Adversarial Robustness of Streaming Algorithms through Importance Sampling

            Vladimir Braverman, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Capacity and Bias of Learned Geometric Embeddings for Directed Graphs
            14:56

            Capacity and Bias of Learned Geometric Embeddings for Directed Graphs

            Michael Boratko, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Channel Permutations for N:M Sparsity
            12:41

            Channel Permutations for N:M Sparsity

            Jeff Pool, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 1 = 0.1%

            Annotation Quality Framework - Accuracy,Credibility, and Consistency
            02:07

            Annotation Quality Framework - Accuracy,Credibility, and Consistency

            Liliya Lavitas, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen