Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: UFC-BERT: Unifying Multi-Modal Controls for Conditional Image Synthesis
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-003-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-003-alpha.b-cdn.net
      • sl-yoda-v2-stream-003-beta.b-cdn.net
      • 1544410162.rsc.cdn77.org
      • 1005514182.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            UFC-BERT: Unifying Multi-Modal Controls for Conditional Image Synthesis
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            UFC-BERT: Unifying Multi-Modal Controls for Conditional Image Synthesis

            Dez 6, 2021

            Sprecher:innen

            ZZ

            Zhu Zhang

            Sprecher:in · 0 Follower:innen

            JM

            Jianxin Ma

            Sprecher:in · 0 Follower:innen

            CZ

            Chang Zhou

            Sprecher:in · 0 Follower:innen

            Über

            Conditional image synthesis aims to create an image according to some multi-modal guidance in the forms of textual descriptions, reference images, and image blocks to preserve, as well as their combinations. In this paper, instead of investigating these control signals separately, we propose a new two-stage architecture, UFC-BERT, to unify any number of multi-modal controls. In UFC-BERT, both the diverse control signals and the synthesized image are uniformly represented as a sequence of discret…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            High Performance Computation for Tensor Networks Learning
            29:08

            High Performance Computation for Tensor Networks Learning

            Xiao-Yang Liu, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Damped Anderson Mixing for Deep Reinforcement Learning: Acceleration, Convergence, and Stabilization
            05:07

            Damped Anderson Mixing for Deep Reinforcement Learning: Acceleration, Convergence, and Stabilization

            Ke Sun, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            The Reflective Explorer: Online Meta-Exploration from Offline Data in Realistic Robotic Tasks
            02:23

            The Reflective Explorer: Online Meta-Exploration from Offline Data in Realistic Robotic Tasks

            Rafael Rafailov, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Differentiable Learning Under Triage
            14:45

            Differentiable Learning Under Triage

            Nastaran Okati, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            eXplainable AI approaches for debugging and diagnosis
            9:32:52

            eXplainable AI approaches for debugging and diagnosis

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Consistency Regularization for Variational Autoencoders
            10:52

            Consistency Regularization for Variational Autoencoders

            Samarth Sinha, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen