Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Counterexample Guided RL Policy Refinement Using Bayesian Optimization
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-007-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-007-alpha.b-cdn.net
      • sl-yoda-v2-stream-007-beta.b-cdn.net
      • 1678031076.rsc.cdn77.org
      • 1932936657.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Counterexample Guided RL Policy Refinement Using Bayesian Optimization
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Counterexample Guided RL Policy Refinement Using Bayesian Optimization

            Dez 6, 2021

            Sprecher:innen

            BG

            Briti Gangopadhyay

            Řečník · 0 sledujících

            PD

            Pallab Dasgupta

            Řečník · 0 sledujících

            Über

            Constructing Reinforcement Learning (RL) policies that adhere to safety requirements is an emerging field of study. RL agents learn via trial and error with an objective to optimize a reward signal. Often policies that are designed to accumulate rewards do not satisfy safety specifications. We present a methodology for counterexample guided refinement of a trained RL policy against a given safety specification. Our approach has two main components. The first component is an approach to discover…

            Organisator

            N2
            N2

            NeurIPS 2021

            Účet · 1,9k sledujících

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Panel: Labor
            59:13

            Panel: Labor

            Raksha Muthukumar, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Oral Session 2: Reinforcement Learning
            1:33:22

            Oral Session 2: Reinforcement Learning

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Opening of the ImageNet: Past, Present, and Future
            14:35

            Opening of the ImageNet: Past, Present, and Future

            Seong Joon Oh

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Who Is the Strongest Enemy? Towards Optimal and Efficient Evasion Attacks in Deep RL
            05:05

            Who Is the Strongest Enemy? Towards Optimal and Efficient Evasion Attacks in Deep RL

            Yanchao Sun, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Generalisation in Lifelong RL via Logical Composition
            05:06

            Generalisation in Lifelong RL via Logical Composition

            Geraud Nangue Tasse, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Why Do Better Loss Functions Lead to Less Transferable Features?
            09:26

            Why Do Better Loss Functions Lead to Less Transferable Features?

            Simon Kornblith, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen