Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Modality-Agnostic Topology Aware Localization
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-005-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-005-alpha.b-cdn.net
      • sl-yoda-v2-stream-005-beta.b-cdn.net
      • 1034628162.rsc.cdn77.org
      • 1409346856.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Modality-Agnostic Topology Aware Localization
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Modality-Agnostic Topology Aware Localization

            Dez 6, 2021

            Sprecher:innen

            FGZ

            Farhad G. Zanjani

            Sprecher:in · 0 Follower:innen

            IK

            Ilia Karmanov

            Sprecher:in · 0 Follower:innen

            HA

            Hanno Ackermann

            Sprecher:in · 0 Follower:innen

            Über

            This work presents a data-driven approach for the localization of an observer on a 2D topological map of the environment. State-of-the-art techniques may yield accurate estimates only when they are tailor-made for a specific data modality that prevents their applicability to broader domains. Here, we establish a model-agnostic framework and formulate the localization problem in the context of parametric manifold learning while leveraging optimal transportation. Our algorithm allows jointly learn…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Differential Inference: A Criminally Underused Tool
            1:00:26

            Differential Inference: A Criminally Underused Tool

            Alexander Rush

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Fractal Structure and Generalization Properties of Stochastic Optimization Algorithms
            14:36

            Fractal Structure and Generalization Properties of Stochastic Optimization Algorithms

            Alexander Camuto, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Contrastive Learning for Neural Topic Model
            10:12

            Contrastive Learning for Neural Topic Model

            Thong Nguyen, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Contributed Talks in Session 1
            29:38

            Contributed Talks in Session 1

            Sebastian Stich, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Classic examples of  engineering responsibility
            09:01

            Classic examples of engineering responsibility

            Deborah Raji

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Self-Paced Contrastive Learning for Semi-supervised Medical Image Segmentation with Meta-labels
            11:25

            Self-Paced Contrastive Learning for Semi-supervised Medical Image Segmentation with Meta-labels

            Jizong Peng, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen