Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Controllable and Compositional Generation with Latent-Space Energy-Based Models
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-006-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-006-alpha.b-cdn.net
      • sl-yoda-v2-stream-006-beta.b-cdn.net
      • 1549480416.rsc.cdn77.org
      • 1102696603.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Controllable and Compositional Generation with Latent-Space Energy-Based Models
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Controllable and Compositional Generation with Latent-Space Energy-Based Models

            Dez 6, 2021

            Sprecher:innen

            WN

            Weili Nie

            Řečník · 0 sledujících

            AV

            Arash Vahdat

            Řečník · 0 sledujících

            AA

            Anima Anandkumar

            Řečník · 1 sledující

            Über

            Controllable generation is one of the key requirements for successful adoption of deep generative models in real-world applications, but it still remains challenging. In particular, the compositional ability to generate novel concept combinations is out of reach for most current models. In this work, we use energy-based models (EBMs) to handle compositional generation over a set of attributes. To make them scalable to high-resolution image generation, we introduce an EBM in the latent space of a…

            Organisator

            N2
            N2

            NeurIPS 2021

            Účet · 1,9k sledujících

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Internet voting in Estonian elections: maintaining trust and mitigating issues
            32:23

            Internet voting in Estonian elections: maintaining trust and mitigating issues

            Tanel Tammet

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Beyond Labeling THINGS-In-3D: Is One Visual Hierarchy Enough?
            18:44

            Beyond Labeling THINGS-In-3D: Is One Visual Hierarchy Enough?

            Maryam Vaziri-Pashkam

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Parametric Complexity Bounds for Approximating PDEs with Neural Networks
            12:32

            Parametric Complexity Bounds for Approximating PDEs with Neural Networks

            Tanya Marwah, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Affordance Learning from Play for Sample-Efficient Policy Learning
            03:15

            Affordance Learning from Play for Sample-Efficient Policy Learning

            Jessica Borja Diaz, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Unsupervised Representation Transfer for Small Networks: I Believe I Can Distill On-the-Fly
            03:35

            Unsupervised Representation Transfer for Small Networks: I Believe I Can Distill On-the-Fly

            Hee Min Choi, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Private and Non-private Uniformity Testing for Ranking Data
            11:06

            Private and Non-private Uniformity Testing for Ranking Data

            Róbert Busa-Fekete, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen